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MIMO Radar: A Multi-Sensor Spatially Diverse Radar Architecture 
Air Force Office of Scientific Research grant no. FA9550-06-1-0026 

Final Report - Dec. 1, 2005 - Nov. 30, 2008 

Alexander M. Haimovich 

August 28, 2008 

Abstract 

The Air Force Office of Scientific Research supported the research on MIMO radar car- 

ried out at the New Jersey Institute of Technology during the period from December 2005 to 

November 2008 under the agreement number FA9550-06-1-0026. The purpose of this report is 

to summarize the proceedings and findings of the studies supported by this agreement. Starting 

with a short introduction, this report provides an overview of the research results on distributed 

MIMO radar with respect to localization accuracy gain and techniques, ambiguity resolution 

techniques, and waveform design. MIMO (multiple-input multiple-output) radar refers to an 

architecture that employs multiple, spatially distributed transmitters and receivers. While, 

in a general sense, MIMO radar can be viewed as a type of multistatic radar, the separate 

nomenclature suggests unique features that set MIMO radar apart from the multistatic radar 

and establishes close relation to MIMO communications. This report documents our work on 

MIMO radar with widely separated antennas thus called "distributed MIMO radar". Widely 

separated transmit/receive antennas capture the spatial diversity of the target's radar cross 

section (RCS). Unique features of MIMO radar are explained and illustrated by examples. It 

is shown that with non-coherent processing, a target's RCS spatial variations can be exploited 

to obtain a diversity gain for target detection and for estimation of various parameters, such 

as angle of arrival and Doppler. For target location, it is shown that coherent processing can 

provide a resolution far exceeding that supported by the radar's waveform. 

The research supported by the grant: (a) provides an in depth analysis of the localization 

accuracy gain attainable with the MIMO radar systems by means of the Cramer-Rao Lower 

bound [1] (b)introduces the geometric dilution of precision (GDOP) metric and the contour 
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mapping [2], [3] providing an insight into the relative performance accuracy for a given layout of 

radars over a given geographic area. These plots offer a clear understanding of the collaboration 

effect of different sensor scheme on the resulting accuracy. Furthermore, target localization 

estimators were developed and evaluated [1], (c)present the analysis on the ambiguity arising in 

the high resolution localization due to sidelobe characteristics of the MIMO system and viable 

solutions to the problem 

1      Introduction 

Active arrays, applied to radar systems, have been a topic of intensive research, and are well 

documented in the literature from the system implementation point of view (see survey of phased 

array systems in [4]). and in terms of processing techniques for target detection and parameter 

estimation [5]. Target parameters of interest in radar systems include target strength, location, 

and Doppler characteristics. 

Phased-array radars with digital beamforming at the receiver have the ability to steer mul- 

tiple, simultaneous beams (see, for example, [5, 6, 7]). Adaptive array radars process the signals 

received at the array elements in order to optimize some performance figure of merit, e.g., signal-to- 

interference ratio [8]. In airborne and other applications, the detection of moving targets and their 

discrimination against the background clutter arc of great interest: this led to the development of 

array radars with space-time adaptive processing (STAP) [9, 10] (as well as recent books [11, 12]). 

In addition to spatial (or space-time) beamforming, signals received at an array can be processed 

to yield high resolution estimates of angle of arrivals of radar targets e.g., MUSIC or maximum 

likelihood (ML) [5]. 

Phased-arrays with multiple transmit elements are capable of cohering and steering the trans- 

mitted energy [7]. Elements of phased-array radars are typically co-located, both at the transmitter 

and receiver ends. Multiple transmit antennas suitably placed may be configured to operate in mul- 

tistatic mode. Typically, a multistatic radar is a system that networks multiple, independent radars. 

Each radar performs a significant amount of local processing. Outcomes of the local processing are 

delivered to a central processor through a communication link [13]. For example, individual radars 

of a multistatic system perform local detection decisions, leaving the central processor the task of 

fusing these decisions. 



In the 1990's, a new and interesting concept, employing multiple transmit elements, has been 

introduced - synthetic impulse and aperture radar (SIAR) [14]. The SIAR transmitting array 

emits orthogonal waveforms. This property ensures that a receiver that processes the aggregate 

of the transmitted waveforms is capable of separating and processing the waveforms individually. 

Through synthetic pulse formation, SIAR achieves the advantages of wideband radar (improved 

range resolution) but with individual antennas transmitting only narrowband waveforms. Unlike 

conventional beamformers, SIAR features isotropic radiation (an advantage in terms of the proba- 

bility of intercept of the radar waveform by a third party). This concept involves a higher degree of 

cooperation among the radar sites than typical multistatic radar systems. As such, it has parallels 

with multiple-input multiple-output (MIMO) systems in wireless communications, and subsequent 

publications have adopted the "MIMO radar" nomenclature for radar systems with cooperating 

transmitters [15, 16, 17, 18]. 

In this report, a MIMO radar is defined broadly as a radar system employing multiple transmit 

waveforms and having the ability to jointly process signals received at multiple receive antennas. 

Elements of MIMO radar transmit independent waveforms resulting in an omnidirectional beam- 

pattern or create diverse beampatterns by controlling correlations among transmitted waveforms 

[19]. A MIMO radar may be configured with its antennas co-located or widely distributed over 

an area. MIMO radar is an emerging concept, but it is already apparent that it has the potential 

to make important contributions to the radar field. In [16] it is observed that MIMO radar has 

more degrees of freedom than systems with a single transmit antenna. These additional degrees of 

freedom support flexible time-energy management modes [17], leading to improved angular resolu- 

tion [20, 21], and improved parameter identifiability [22]. With widely separated antennas, MIMO 

radar has the ability to improve radar performance by exploiting radar cross section (RCS) diversity 

[23], handle slow moving targets by exploiting Doppler estimates from multiple directions [24], and 

support high resolution target location [25]. 

MIMO radar with widely separated antennas is the topic of this report. From a model point 

of view, widely separated antennas take advantage of the spatial properties of extended targets, 

while with co-located antennas, the target is modeled as a point with no spatial properties. Each 

configuration and model has its strengths and challenges. With co-located antennas, MIMO radars 

can mimic beamformers utilizing low probability of intercept (LPI) waveforms.   Rather than fo- 



cusing energy on a target, the transmitted energy is evenly distributed in space [15]. The loss of 

processing gain compared to conventional phased-array beamforming due to the uniform illumina- 

tion is compensated by the gain in time, since a narrow beam does not need to be scanned [18]. 

MIMO spatial signatures in systems with co-located antennas can be exploited to estimate radar 

parameters (location, RCS) of multiple targets, but the ability to resolve targets is limited by the 

Rayleigh resolution limit of the transmit/receive arrays. Widely separated antennas support high 

resolution target location, and by focusing on the effect of the channel, create a link between MIMO 

radar and MIMO communications. 

MIMO systems have led to a revolution in wireless communications [26]. Recent publications 

(for example, [23] and references therein) indicate that one can exploit similar ideas in radar, sug- 

gesting interesting cross-fertilization of ideas between MIMO communications and MIMO radar. 

For quite some time, it has been understood that radar targets provide a rich scattering environ- 

ment yielding 5 to 20 dB target RCS fluctuations, as illustrated in Fig. 1. Such targets display 

essentially independent scattering returns when radiated from sufficiently different directions (see 

[23] for a mathematical illustration of this using a reasonable model). The premise of MIMO radar 

with widely separated antennas is that angular spread (RCS variations as a function of aspect) can 

be exploited to improve radar performance in a variety of ways. The parallel to MIMO communi- 

cation is recognized in the similar roles that the transmission medium (channel) and target play in 

respectively, communication and radar. In other words, the target serves as the "channel" in the 

radar problem. For example, combining target returns resulting from independent illuminations 

yields a diversity gain akin to the diversity gain obtained in the communication problem over fad- 

ing channels when the data is transmitted through independent channels. Diversity gains are well 

understood in communications [27]. In radar, the idea is that any individual look at the target 

might have a small amplitude return with a significant probability, but by increasing the number 

of looks, the probability that all the looks have small amplitude returns can be made arbitrarily 

small. In [28] and some other publications, the nomenclature statistical has been used for MIMO 

radars that exploit a target's spatial diversity. 

Diversity gain is only one of two key gains that MIMO communications can provide. The other 

gain is called spatial multiplexing [26]. Spatial multiplexing in MIMO communications expresses 

the ability to use the transmit and receive antennas to set up a multidimensional space for signaling. 



Figure 1: Backscatter as a function of azimuth. 

Then, by suitable techniques, it possible to form uncoupled, parallel channels that enable the rate of 

communication to grow in direct proportion to the number of such channels. Similarly, in M1MO 

radar, a multidimensional signal space is created when the returns from multiple scatterers or 

targets combine to generate a rich backscatter. With proper design, transmit-receive paths can be 

separated and exploited for improving radar performance. 

In communications, the key property that made MIMO such a successful concept has been 

the ability to substitute the spatial dimension for the bandwidth resource. Narrowband MIMO 

communication systems perform like wideband systems without MIMO. In radar, bandwidth also 

plays an important role. Frequency diversity has been applied to decorrelate RCS response of 

complex targets, and high resolution location estimation is possible with wideband waveforms [29]. 

By exploiting the spatial dimension, MIMO radar with widely separated antennas may overcome 

bandwidth limitations and support high resolution target location. At the same time, this type of 

MIMO radar has the challenge of time and/or phase synchronizing multisite systems, and needs to 

deal with ambiguities stemming from the large separation between sensors. 

This report elaborates the research proceedings on MIMO radar with widely separated anten- 

nas during the period from September 2005 till presence with the goal of elucidating key concepts, 

illustrating them by examples, and thus encouraging further research on this emerging technology. 

Section 2 introduces the MIMO radar concept and discusses it in the context of other radar archi- 



tectures. Analysis of the localization accuracy gain attainable with the MIMO radar systems by 

means of the Cramer-Rao Lower Bound and the geometric dilution of precision (GDOP) metric- 

area are presented in Section 3. The contour mapping providing an insight into the relative perfor- 

mance accuracy for a given layout of radars over a given geographic are presented in this section. 

Section 4 is devoted to discuss the findings on the ambiguity issues in localization arising out of 

sidelobe characteristics of MIMO system. Work done on solving this problem are presented therein. 

A discussion on the application of distributed MIMO radars is included in Section 5. Concluding 

remarks following in the last section. A comment on notation: vectors are denoted by lower-case 

bold, while matrices use upper-case bold letters. The superscripts 'T' and 'f denote the trans- 

pose and Hermitian operators, respectively. Locations in the x-y plane are denoted in upper-case 

X = (x,y). 

2    MIMO Radar Concept 

This section introduces the MIMO radar signal model, discusses conditions leading to RCS spatial 

diversity, and contrasts the architecture of MIMO radar with other multiple-element radars. 

2.1     Signal Model 

Assume a distributed target that consists of many, say Q, independent, isotropic scatterers located 

in a plane that also contains the transmit and receive antennas. The scatterers are located at 

coordinates Xq, q = 1,..., Q, where Xq = (xqi yq). Fig. 2 provides an illustration of the setup. In 

the figure, a distributed target is shown to comprise four scatterers. Each scatterer is represented 

by a circle to emphasize its isotropic reflectivity. The reflectivity of a scatterer is modeled by 

a zero-mean, independent and identically distributed (i.i.d.) complex random variable Qq with 

variance E |Q| = l/<5- Reflectivity values of the target are organized in a diagonal QxQ matrix, 

£ = diag(Ci, • • • ,CQ)- Given the reflectivity of an individual scatterer, the target average RCS is 

i^ti^ES*)] = 1, independent of the number of scatterers in the model. If the RCS fluctuations 

are fixed during an antenna scan, but vary independently from scan to scan, our target model 

represents a classical Swerling case I (which represents a target in slow motion) [29]. Now let 

the target be illuminated by M transmitters arbitrarily located at coordinates Tk — (X,A., .<;,/,.). 
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Figure 2: MIMO radar with extended target. Target comprises of four point scatterers. Scatterers 
located at points Xq and have reflectivity (q. RCS center of gravity located at XQ. Transmit antennas 
located at T/., receive antennas located at R(. 

k = 1,..., M. The signals scattered by the target are collected by TV sensors placed at arbitrary 

coordinates R( = (xr(, yr(), £ = 1,.. ., N. The set of transmitted waveforms in lowpass equivalent 

form is xjE/Ms^ (t). k = 1,... , M, where Jr |sfc (t)\ dt = 1, E is the total transmitted energy, 

and T is the waveforms' duration. Normalization by M makes the total energy independent of 

the number of transmitters. Let all transmitted waveforms have the same bandwidth W. Then 

the two-dimensional resolution cells illustrated by the grid in Fig. 2 have approximate dimensions 

{c/W) x (c/W), where c is the speed of light. Further specification of the waveforms s^ (t) depends 

on the application. For example, for focused beampatterns, the waveforms s^ (t) may be identical 

or differ by a phase shift. For target classification or parameter estimation, the statistical model 

for the observations may be employed for specialized waveform design [30]. In another example, 

for MIMO radar seeking to exploit target spatial diversity, it might be desired to design orthogonal 

waveforms, for ease of separation at the receiver. Orthogonality may be imposed in the time 

domain, frequency domain or in signal space. Throughout the paper it is assumed that transmitted 

waveforms are orthogonal and that orthogonality is maintained even for different mutual delays, 

i.e., L- s/j (t) s*„ (t — T) dt = 0 for all k ^ m, and for all time delays of interest. 

In the model developed below, path loss effects are neglected, i.e., the model accounts for the 



effect of the sensors/target locations only through time delays (or phase shifts) of the signals. 

It is not difficult to show that the lowpass equivalent of the signal observed at sensor £ due to 

a transmission from sensor k and reflection from a scatterer at coordinates Xq — (xq.yq) (and 

excluding noise) is given by 

«{?(*) = \J^Cqsk (t - Ttk (Xq) - Tri (Xq)) exp (-j2nfc \rtk (Xq) + rrt (X,)]), (1) 

where rtk {Xq) — d(Tk,Xq) jc is the propagation time delay between the fc-th transmitting sensor 

located at coordinates Tk and the scatterer at Xq, d(Tk,Xq) = W(xtk — xq) + (ytk — Vq)'• and /, 

is the carrier frequency. The propagation time rr( (Xq) from the scatterer to the £-th receiving 

sensor is defined analogously to Ttk (Xq). Note that (1) denotes a near-field signal model, where 

the phase of the received signal is a function of the transmit and receive element locations as well 

as the location of the scatterer. In contrast, in a far-field signal model, the target is assumed to 

be sufficiently far such that it is essentially at the same distance and angle with respect to all the 

transmit and/or receive elements. 

Continuing with the signal model in (1), we can interpret the term 

hl£ = C, exp {-j2iffe [Ttk (Xq) + rrt (Xq)}) (2) 

as the equivalent "channel" between transmitter k, scatterer q, and receiver L A channel element 

(2) is comprised of three parts: (i) exp \—j2TrfcTtk (Xq)]: the phase shift due to the propagation from 

transmitter k to scatterer q, (ii) (,q, the reflectivity of the scatterer, and (iii) exp \—j2irfrjv{ (A",,)]. 

the phase shift due to the propagation from the scatterer to receiver L Summing over all the 

scatterers that make up the target, the model in (1) becomes 

\~E   Q 

*ek(t) = \jjjY, >4N (< - rtk (Xq) - TH (Xq)) (3) 

We assume that the bandwidth of the transmitted waveforms is such that they are not capable of 

resolving individual scatterers. This is stipulated by the condition that the target has an RCS center 

of gravity at A0 = (:rn, y0), and that sk {t - rtk {Xq) - TT( (A,,)) « sk (t - rtk (A0) - Trt (A0)) for 



all q = 1,..., Q. With this condition, (3) becomes 

ztkit) = \jjjheksk (t - rtk (X0) - Tre (X0)). (4) 

where />a-= E?=i h$. 

The path gains hy, from transmit to receive antennas of the MIMO radar are organized in a 

N x M matrix H. It can be shown that the matrix H can be expressed [18] 

H = KEG. (5) 

Equation (5) highlights the contribution of the transmit paths, the target components, and the 

receive paths: The transmit paths are represented by the Q x M matrix G, G = g[; g.] ;...; g^ 

g^ = [1, exp [—j2nfcTti {Xq)],..., exp [—j2irfcTtM (Xq)]]. Information on the receive paths is em- 

bedded in the N x Q matrix K, K = [ki,k2, • • • ,kg], the semi-colon separates rows, and k(' = 

[l,exp [—j2nfrTr\ {Xq)],... ,exp [—j2irfcTr^ (Xq)]]. We recall that the matrix X was defined in 

Section 2.1. From (4) and accounting for additive noise, it is possible to express the observed 

waveforms at the receive antenna £ as: 

[~E   M 

ri{t) = \JMY. 
h(kSk (* " Ttk (*°) - T* (X°)) + W( O ' (6) 

fe=i 

where we (t) is circulaily symmetric, zero-mean, complex Gaussian noise, spatially and temporally 

white with autocorrelation function a'^6 (r). We define the vector r (t) = [rj (t),.... r^ (t)] for 

later use. Properties of the elements hik of the channel matrix H are discussed next. 

2.2      Spatial Decorrelation 

In the previous subsection, we introduced a stochastic model for the channel elements h(k- Here, 

we discuss the conditions for spatial decorrelation of these elements. 

In [23], it is shown that, if Q is large, all the channel elements h^ are jointly Gaussian with 

zero mean and unit variance. Let two transmit antennas have coordinates (xtk,Vtk) and {xu,yti), 

respectively, and let the target dimensions along the x and y axes be Dx and Dy, respectively. 

Further, let two receive antennas have coordinates {xre,yre) and (xrj,yrj), respectively.   Recall 



the definitions of distance d(Tk,Xo) between transmit antenna at Tk and the target at XQ, and 

of distance d (Rt, XQ) between receiver antenna at R( and the target at XQ. If at least one of the 

following four conditions are met: 

%tk -xti > d (7*, X0) X/Dx 

Vtk -yti > d (Tk, XQ) X/Dy 

xre — xrj > d (Rf, XQ) X/DX 

Vre-Vrj > d(Re,X0)X/Dy, (7) 

xtk xu X 
d(Tk,XQ)     d(Tt,XQ) Dx 

ytk yu x 
d(Tk,X0)     d(Ti,X0) Du 

Jbyf tLry-i /\ 

d(Rt,X0)     d(Rj,X0) Dx 

Vrl Vrj 2^ 
d(Re,X0)     d(Rj,X0) Dy 

where A is the carrier wavelength, then it is shown in [23] that the ^fc-th and ji-th elements of the 

channel matrix are uncorrelated. Conversely, if 

xtk ~ xti < d (Tk, XQ) X/DX 

Vtk-Vti < d(Tk,Xa)X/Dy 

xr£ - xTj <§: d (R^, XQ) X/DX 

Vrt-Vrj « d{Re)Xo)X/Dy, (8) 

then the Ek-th and j?-th elements of the channel matrix are correlated. Loosely speaking, these 

results mean that if the distributed target is viewed as an antenna with aperture length D (D could 

be Dx or Dy from the discussion above) the elements of the channel matrix H decorrelate if the 

target's beamwidth cannot illuminate two sensors simultaneously. An illustration of this concept 

is shown in Fig. 3. For example, for a target at distance d = 104A and of dimension D = 10A, the 

separation required between the elements of the MIMO radar is of the order 103A. Conversely, when 
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Target Bearr'Aidlh 

Figure 3: Elements of the channel matrix decorrelate when the MIMO radar antennas fall in 
different beamwidths originating from the target. 

the distributed target acts as an antenna that has two sensors in the same beamwidth, elements of 

H associated with these sensors are correlated. Since each element of H represents the path gain of 

a transmitter-receiver pair, decorrelation supports a diversity of path gains. We conclude from the 

foregoing discussion that to obtain path diversity to an extended target, the MIMO radar antennas 

need to be sufficiently separated. However, even when the MIMO radar antennas are co-located. 

(left hand side terms in (7) are of the order of A/2), then decorrelation is still possible for large 

D. Taking the example we used earlier with a distance to target of d = 104A, the condition for 

decorrelation is D > 2 x 104A, i.e., twice the distance to the "target". In this case, D cannot be 

the aperture of a single extended target, but rather we could view two point targets separated by 

D as an array with two elements. 

For further insight into the conditions for spatial decorrelation, let us consider the role of 

the target in the spatial decorrelation of the elements of H. From the discussion so far, spatial 

decorrelation of the elements of the channel matrix occurs for complex targets (large number of 

scatterers Q) and widely separated sensors. A large number of scatterers results in rich RCS 

patterns, such as the one in Fig. 1. The large number of scatterers, each with its own reflectivity (^ 

and location Xq = (xq, yq), combine at the receive sensors to create a fading signal. Widely spaced 

sensors cause the paths from the transmitters (T^'s in Fig. 2) to the scatterers (Xqs), and from the 

scatterers to the receivers (Re's) to be sufficiently diverse such that each receive sensor experiences 

a different fading signal. This is the root of the spatial decorrelation. What happens for simple 

targets with only a few scatterers? In the extreme of a single spherical scatterer with uniform RCS 

11 



as a function of angle, there are no multiple signals that combine to create the fading elements of 

the channel matrix. With the loss of fading, the elements of the channel matrix become correlated. 

2.3    High Resolution Mode - Coherent Processing 

It is useful at this point to review the time and phase synchronization requirements of the MIMO 

radar. For obtaining diversity gain in target detection the processing is non-coherent. The compu- 

tation of the statistic requires the adjustment of time delays. This means that sensors need to have 

a common time reference, i.e.. to be time synchronized. For instance in direction finding applica- 

tion, time synchronization is required between the widely distributed transmitters, while the receive 

end operates as a phased-array with inter-element spacing of A/2 and needs phase synchronizat ion. 

Moving target detection requires time synchronization among sensors. In addition, each sensor is 

required to perform coherent time sampling. 

We now turn to applications that require phase synchronization among widely separated sensors. 

Phase synchronization is required at both the transmit and receive ends. In the first example, we 

discuss high resolution target location. The second example is a brief discussion on the application 

of MIMO radar to estimate the number of targets. 

We start by assuming a point target located at XQ = {xo, yo)- The case of multiple targets will 

be discussed subsequently. From (6), we have 

fe=i 

where the term hy, is of the form (2), i.e., h^ — CoPffc (^o) i anc* 

Plk (-^o) = exp[-j27r/t(Ttfc (XQ) + rr( (Xo))]. The notation p^ (XQ) emphasizes the dependency of 

the channel on the location of the target. The quantity Co represents the isotropic reflectivity of the 

target. Here, we assume that the target comprises a single scatterer, and that its reflectivity is Co- 

The reflectivity Co can be modeled as a random variable or as an unknown deterministic quantity. 

Following [25], the latter model is adopted for Co- 

For high resolution target detection, we can set up a log-likelihood ratio test such as in (30). 

except that the likelihoods are calculated assuming the model for h(k laid out in the previous 

paragraph.    First, we develop the test statistic, then, we will demonstrate that the resolution 
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cells are of higher resolution than the detector.  Under the H\ hypothesis, the likelihood function 

conditioned on the reflectivity Co and computed for a point X = (x, y) is given by 

I      1    N    f 
Px (r|#i,Co) oc exp 2" E / 

E M 

n{t) - Cod- £>* (X) sk (t - rtk (X) - rrt (X)) 
it=i 

dt 

(10) 

The likelihood (10) is conditioned on Co- Keeping only terms that are dependent on the location X 

px (r|#!,|Co) ocexp    -- |Co|2 JjjMN - 2Re   Co E EP* (X) Vek (X) 
V   e=i fe=i / 

11 

where (Re{} denotes the real part) and y (A")is obtained by applying the matched filter for wave- 

form Sk {t) to the received signal at the ^-th antenna, re (t), and sampling at a time delay corre- 

sponding to location X: 

Vek IX) = J re (t) 8% (t - [rtk (X) + TH (X)}) dt. [12) 

To get rid of the nuisance parameter Co, its MLE is calculated and substituted back in (11) 

From (11), the MLE of Co is given by 

N    M 

Co = -T=? E E Ptk PO ytk (X) 
§jMN i=\ fc=i 

Substituting back in (11) and dividing by px (r|i/o) <x exp [—-Jt X^=i fr lrH^)l   dt) . it can be 

shown that the log-likelihood is given by 

Lx (r) oc 
N    M 

EE^www 
?=i /t=i 

(13) 

This expression must be evaluated by a central processor and it requires phase synchronization 

across both transmit and receive sensors. This is in contrast with the processing that extracts 

diversity gains or performs moving target detection, where the processing across sensors was non- 

coherent. 
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To obtain further insight into the high resolution mode, focus on the noiseless part of L\ (r) 

and define the function 

A(X) = —?—_ 
(MiV) 

where 

N    M 

^^pttW^w 
e=i fc=i 

;i4) 

fik (X) = J Sk (t) 4 (t - Ttk (X) - Trt (X)) dt. (15) 

The function A (X) represents the zero Doppler cut through the ambiguity function. The ambigu- 

ity function represents the response to a point target of reflectivity Co = 1 located at XQ, when the 

processing is adapted to a target located at X. The term </?^ (X) is the ambiguity function (zero- 

Doppler cut) of the transmitted waveform measured at sensor £. Since A (X) requires phase infor- 

mation, it is referred to as the coherent ambiguity function of the MIMO radar. The high resolution 

properties of A (X) are determined by the phase terms p^ (X) — exp (j27r/c [(TT( (X) — rr( (XQ))]). 

The non-coherent ambiguity function (assuming a point target) is given by 

N     M 
Anc{x) = MTVEEI^W^-WI

2 

1=1 fc=l 

TV     M 

e=i fe=i 

It is clear that the values of the coherent ambiguity function are upper bounded by the non-coherent 

ambiguity function A (X) < Anc (X). The "coherent" ambiguity function A (X) is plotted in Fig. 

4 for 9 x 9 system and for the x coordinate. The "non-coherent" ambiguity function Anc (X) is 

shown for comparison. The transmitters and receivers are placed uniformly in the sector —45" to 

45° with respect to the target. The ratio between the bandwidth and the carrier frequency is 0.01 

(see [37] for more details). The high resolution capability is evident in the fact that the width of 

the mainlobe of the coherent ambiguity function is approximately equal in size to the wavelength 

A, while the mainlobe of the non-coherent ambiguity function (determined by the bandwidth) is 

much wider. 

The discussion above was concerned with a high resolution mode of MIMO radar applied to 

a point target.    High resolution processing can also be applied to complex targets.    Next, we 
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Figure 4: Coherent and noncoherent ambiguity functions for a 9 9 MIMO radar system- 

demonstrate the ability of MIMO radar of resolving four targets located at coordinates (0,0), (0. GA). 

(6A,0)and (6A.GA), respectively. Fig. 9 is a three-dimensional representation of the ambiguity 

function for four targets [37]. To compute the ambiguity function for this case, the first Sfc (t) in 

(15) is substituted with J2k=i sk {t - 7"tfc {Xk) ~ Tr( (-^fc)), where the X^s represent the targets' 

locations. The four scatterers are clearly visible. 

The high resolution mode enabled by the coherent processing of widely distributed sensors 

merits further discussion. It is well known that given a linear array of length L, fully populated 

with sensors spaced at A/2 intervals, the cross-range resolution (the dimension parallel to the array) 

at distance d from the array is approximately 6 = dX/L. Thinning the array preserves the resolution, 

but gives rise to grating lobes. Randomly placing the sensors of the thinned array breaks up the 

grating lobes at the cost of higher sidelobes than the fully populated array. Such arrays are referred 

to as random arrays and their properties have been investigated [38, 43]. Statistical analysis for a 

single transmitter and N receivers has shown that the mean sidelobe level (MSL) is approximately 

1/N. Our formulation of MIMO radar leading to (13) is consistent with an extension of the linear 

random array concept to a planar topology and multiple transmitters.   The resolution of MIMO 
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Figure 5: Coherent ambiguity function of a 9   9 MIMO radar for four targets. 

radar configured with widely separated elements scales with the carrier wavelength A, and thus, 

can greatly exceed the bandwidth resolution barrier set by the radar illuminating waveform. 

With the higher resolution, the number of tests required for target detection may increase 

dramatically. An efficient mode of operation could be to let MIMO radar first detect the target 

over resolution cells [c/W) x (c/W). Once the presence of a target is determined, the MIMO radar 

will switch to high resolution mode seeking to extract additional information such as high resolution 

location, size, identification, etc. 

While the MSL can be controlled through the number of elements in the array, more troubling 

from a performance point of view is the peak sidelobe level (PSL), which can exceed the MSL by 10 

dB or more [38]. Controlling the MSL and PSL is of great interest in high resolution applications of 

MIMO radar. Maintaining coherency across sensors at both the transmit and receive ends results 

in a MSL of the order of 1/ (MTV). Note that a MIMO radar with full coherency requires (M + N) 

sensors to achieve the same MSL as a radar with one transmitter and MN receivers. MIMO radar 

thus has an economical advantage, since for cases of interest, (M + N) <C MN. 

A variety of techniques are available for reducing the PSL. Waveforms with frequency diversity 
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were suggested in [43]. Another idea first mentioned in the context of linear random arrays and 

that seems to have a natural extension to MIMO radar is the non-coherent combining of several 

random arrays [43]. 

"Spatial Multiplexing" with MIMO Radar Using the signal model developed in this sec- 

tion, the number of targets that can be handled simultaneously parallels the concept of "spatial 

multiplexing" in communications. The rank of the matrix H defined in (5) is upper bounded by 

the lowest rank among the matrices K, S, and G. For sufficiently separated receive antennas, it 

can be shown that rankK = TV [18, 23]. Similarly, for sufficiently separated transmit antennas, 

rank G — M. Finally, for Q point targets present, rank £ = Q. If Q < min (M, TV), the rank of the 

matrix H serves as an indicator of the number of targets in the field of view of the MIMO radar. 

An estimate of Q can be determined efficiently from a singular value decomposition of H provided 

that the magnitudes of the singular values of the noise-plus-clutter are known to be much smaller 

than those corresponding to the signal returns. 

3    Localization Accuracy 

This section elaborates the analysis of the localization accuracy gain attainable with the MIMO 

radar systems by means of the Cramer-Rao Lower bound. Introducing the geometric dilution of 

precision (GDOP) metric and the contour mapping provides an insight into the relative perfor- 

mance accuracy for a given layout of radars over a given geographic area. These plots offer a 

clear understanding of the collaboration effect of different sensor scheme on the resulting accuracy. 

Furthermore, target localization estimators are developed and evaluated. The distinction between 

non-coherent and coherent applications relies on the need for merely time synchronization between 

the transmitting and receiving radars vs. the need for phase synchronization. The MIMO radar 

architecture with coherent processing exploits knowledge of the phase differences measured at the 

receive antennas to produce a high accuracy target location estimate. In traditional radar systems. 

bandwidth plays an important role in providing resolution range, i.e., it is inversely proportional to 

the signal efficient bandwidth. The ambiguity function concept has long been used in the context 

of localization. In [24] it has been used to provide a comparative performance of coherent vs. non- 
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Figure 6: The MIMO radar linear perturbation model. 

coherent processing of MIMO radar waveforms. The high accuracy localization benefits of coherent 

MIMO radar systems are inherent in the ambiguity function plots. As the potential for localization 

performance enhancement is evident from the ambiguity function, the lower bound on the attain- 

able accuracy is set in [1] by developing the Cramer-Rao lower bound. The bound is shown to be 

proportional to the carrier wavelength squared, and independent of the signal bandwidth. It is also 

shown to be reliant on the location of the radars, although this dependency cannot be intuitively 

identified. For this, other tools need to be introduced, as we discuss later in the report. Once 

developing an expression for the lower bound on the MSE for target localization, we 

turned our attention to target localization techniques and their performance relative to the 

CRLB. Two estimators were developed and presented in [1]: the maximum likelihood estimator 

(MLE) and the best linear unbiased estimator (BLUE). The MLE is motivated by its asymptotic 

optimality, while the BLUE by its closed form expression. The MLE is a practical estimator in the 

sense that its application to a problem of observations in white Gaussian noise is relatively straight- 

forward. Moreover, under mild conditions on the probability density function of the observations. 
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the MLE of the unknown parameters is asymptotically unbiased, and it asymptotically attains 

the CRLB. Since a closed form expression cannot be found for the MLE, numerical methods need 

to be applied. A grid search or an iterative maximization of the likelihood function needs to be 

performed to determine the target location. This might involve a significant computational effort. 

A different approach to the problem is by using a linear perturbation model of the target location 

(as illustrated in Fig. 6) with the BLUE [1]. The BLUE estimator provides a closed form solution 

and a comprehensive evaluation of the performance of the estimators mean squared error (MSE). 

This result supports the expectation for the target localization accuracy to be independent of the 

bandwidth and provides an insight into the relation between sensors locations, target location, and 

localization accuracy. To establish a more comprehensive expression of these relations, a metric 

widely used in Global Positioning Systems (GPS) for mapping estimation precision and known as 

geometric dilution of precision (GDOP) was introduced in [1], [2]. 
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Figure 7: GDOP maps for a symmetric positioning of radars around the axis origin: case (a) for 
M = N = 3 (b) for M = N = 5. 

The GDOP metric expresses the effect of the positions of the transmitting and receiving elements 

of the MIMO radar on the relationship between the time delay estimation errors and the localization 

errors. In this expression, the sensors' locations are embedded. The GDOP reduces the combined 

effect of the locations to a single metric.  Once we get the values mapped, the actual localization 
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error is easily derived by multiplying the GDOP value with a constant equal to the effect of the noise 

variance. In Fig. 13, contour plots of the GDOP values are presented for the case of respectively, 

M — N — 3 and M — N — 5 radars positioned symmetrically on the N vertices of a polygon 

centered at the origin. The radars are all transmitting orthogonal signals and perform time delay 

estimations. The first noticeable factor in the comparison of the two plots is the higher accuracy 

obtained with five radars compared to three radars. For example, the lowest GDOP value for the 

case of three radars is 0.4715, while with five radars, the GDOP is 0.2829, corresponding to a 

60% improvement. All the targets located inside the virtual N-sided polygon achieve relative high 

accuracy localization, while the most accurate localization is obtained for the target at the center. 

The increase in GDOP values from the center to the polygon boundaries is slow. Outside this 

polygon, the GDOP values increase rather rapidly. In Fig. 8 contours of five non-symmetrically 

positioned radars are drawn. When the radars are spread around the target (Fig. 8(a)), there are 

still some areas with good measurement accuracy, though the coverage is shrunk compared to the 

case with symmetrical distribution of sensors in Fig. 7(b). When the viewing angle of the target is 

very restricted, as in Fig. 8(b), there is a marked degradation of GDOP values. 
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Figure 8: GDOP maps for a asymmetric positioning of radars around the axis origin: case (a) GDOP 
contours for an asymmetric positioning of radars around the axis origin, (b) GDOP contours for 
the case where the radar are aligned. 

These examples have shown that a symmetrical deployment of sensors around the target yield 
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lowest GDOP values. Theoretical analysis of the lowest attainable GDOP for a passive system 

(such as GPS) is known to be 2/y/M, where M is the number of transmitting sensors. For MIMO 

radar system with M transmitters and N receivers, we have shown that the lowest achievable 

GDOP can be approximate by %J2/MN, where for M = N it is equal to \/2/N2. This result is 

interpreted as a "MIMO advantage" compared to the single transmit antennas case. As a numerical 

example, the lowest GDOPs in Fig. 13 are respectively yj2pP = 0.4715 and v/2/52 = 0.2829. In 

summary, the work supported by this grant not only validated previous findings for the potential 

high accuracy performance of MIMO radar, but also resulted in new tools for target localization. 

We have developed analytical expressions for the estimation errors of coherent MIMO radar. It 

disclosed the dependency of the accuracy on the carrier wavelength and shows that MIMO radar can 

locate targets with high resolution. Practical localization tools like the MLE and the BLUE were 

attained. Study tools like the GDOP plots were developed to provide a clear view of high accuracy 

areas for a given set of radar locations. These plots could also serve as a decision supporting tool 

for choosing favorable radar locations to cover a given target area with high accuracy The work 

supported by this grant has already served as a foundation of other scientistsf research, which 

underlines its innovative nature and significance. 

4    Sidelobe Ambiguity 

One of issues in distributed MIMO radar is the ambiguity in target localization due to the sidelobes 

in the spatial patterns of performance matrics. Coherent processing implies time synchronization 

at a finer scale for phase coherency in the received signal at receive antennas in addition to the 

delay compensation for the waveform at the matched filter receiver. To elaborate further, consider 

the scenario depicted in Fig. 9. A signal waveform transmitted from antenna k at the location P 

is reflected off by the target at the location O (observation point) and received by the antenna / 

at Q. In the process of scanning a point R in the surveillance area, the phase change due to the 

round trip path P — R— Q is compensated by the transmitter, or the receiver, or by both. When 

the scanning point R coincides with the actual location of the target O, phase change is perfectly 

compensated. 

When the scanning point P is different from the actual location of the target O, the difference 
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Figure 9: Analytical framework. 

between the actual phase of the received signal and the computed phase, leads to under/over 

compensation of phase. The receiver output therefore is periodic over the space with the deviation 

of the scanning point from the actual location of the target. With multiple transmit and receive 

antennas, the phase compensation and the subsequent combining of receiver outputs amount to 

summing a number of vectors with different phases. When the scanning point coincides with the 

actual location of the target, complete coherency is achieved for all the transmit/receive antenna 

pairs and the resultant signal is maximized. At other locations, different transmit/receive antenna 

pairs experience different levels of phase coherency. The resultant signal thus forms a pattern with 

peaks and valleys over the two dimensional space of the surveillance area. We call the pattern in 

the space as the random phase coherence ambiguity (RPCA) function. 

Ideally, we wish to have the RPCA pattern to be an impulse at O. Such an ideal pattern 

would let us have infinite resolution power resulting in ideal localization and imaging capabilities. 

The inherent nature of antenna arrays cause non-ideal behavior in several different ways. First. 

the resolution power is limited by the carrier frequency and the antenna aperture. In particular, 

for linear arrays, the beamwidth (defined in some sense, such as half-power or null-to-null) of the 

mainlobe is proportional to X/L, where A is the carrier wavelength and L is the aperture size of the 

antenna system [39]. While this result remains true for far-field as well as near-field scenarios, the 
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distributed MIMO radar adds another twist referred to as geometric dilution of precision (GDOP). 

GDOP is a term used in geo-positioning systems (GPS) to describe the effect of sensor location on 

the localization performance. The GDOP effect causes the beamwidth of the mainlobe of the RPCA 

pattern to depend on the geometry of the aperture as well. Best resolution is shown to be achieved 

when the antennas are placed symmetrically around the target [40, 41]. The second non-ideality is 

due to the sidelobe and grating lobe patterns. Grating lobes may have equal level as the main lobe, 

and the number of grating lobes appearing in the visible region (surveillance area) is a function of 

number of antennas and the aperture size. It has been shown that for an array of equally spaced 

elements, the number of grating lobes in the visible region reduces as the number of elements is 

increased. Nevertheless the grating lobes can be broken by randomizing the element positions, 

thus making it possible to reduce the number required elements to overcome the ambiguity due to 

grating lobes [38]. Distributed MIMO radars inherently have randomly distributed antennas and 

therefore, a study on the effect of randomness of elements on the ambiguity performance is of great 

interest. 

In the process of target localization, a carrier modulated waveform is transmitted by each 

transmit antenna and received by all receive antennas. The waveforms are assumed to be mutually 

orthogonal. Thus with proper synchronization, each waveform can be separated out by correlating 

the received signal with each transmitted waveform. In the coherent processing approach, the 

receiver also uses carrier phase information. When the scanning point coincides with the actual 

target, perfect phase matching is achieved thus the received signal power is maximized. The effect 

of waveform is such that it behaves as an envelope to the sidelobes and grating lobes thus reducing 

the ambiguities. Nevertheless, the discussion in this proposal does not consider the waveforms. 

Rather, we study the effect of only the carrier phase. Therefore it is an analysis of worst case 

scenario with respect to the ambiguities in distributed MIMO radars. 

Maximum Likelihood Estimation and the RPCA Function The concept of likelihood 

function and resulting RPCA function are described here so as to setup the background for the 

discussion to follow. Assume there are M transmit antennas and N receive antennas. A transmit 

antenna k transmits a waveform Sfc(i) = s£(£)ej27r-")(, where sk(t) is the equivalent lowpass signal 

waveform as a function of time t, and /o is the carrier frequency. The received signal at transmitter 
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I due to the transmission from k can be expressed as r/(<) = 5Zfc=1 Sk{t — Tki) + ni(t), where TJU is the 

round-trip delay from k to / via the target and n/(i) is the noise waveform at the receive antenna. 

We may express r;(i) as rb(t)e^27r^ot in terms of the lowpass equivalent. With the assumption that 

the waveforms transmitted from two antennas say k and k' are mutually orthogonal for all delays, 

i.e., J sb
k(t)s

b
k*, (t - r)dt » 0 for all r and k ^ k', the receiver / is able to separate out the waveforms 

transmitted from different antennas using the correlation process. The probability density function 

(pdf) of the received signal vector r can be written as 

m K exp 
i ° fc=i 1=1 •y-°°        *;=! J 

(17) 

where re is a proportionality constant, a is the standard deviation of Gaussian noise, and Q is the 

reflection coefficient of the scatterer, assumed to be constant with respect to all transmit/receive 

antenna pairs. Expansion of (17) and the use of maximum likelihood criteria to eliminate (,', leads 

to the log-likelihood function that assigns values to an estimated location £ with estimated delay 

ln/(r|0 = ci 
M    N 

££e-^Wrf(«)4(i-fH)cft 
i i   ; _ i J 

+ <••!• (18) 
fc=i i=i 

where c\ and c-i are constants and r^ = fjy — TM is the relative round trip delay for the estimated 

location with respect to the actual location of the targets. The ambiguity function defined as a 

scaled version of log likelihood function in (18). 

A(0 
1 

MN 

M    N 

EEe"j2"/0T£ 
fc=i (=i 

VsbATkL (19) 

where <psb(Tki) — f rf*(t)sb
k(t - Tki)dt. The ambiguity function defined here has been normalized 

such that in the absence of noise, the peak value is obtained at the actual location of the target. Our 

present work is concerned with the effect of phase coherency in the ambiguity function. Therefore 

with the omission of the effect of noise, and the assumption of unit energy for the waveform, we 

arrive at the RPCA function defined as 

.4(0 
M     N 

MN 2^' 
it=i i=i 

-J2TT/0T (20) 
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The absolute value notation |.| is also omitted so that to leave -4(£) to be a function with magnitude 

and phase resulting in a function having correspondence to the antenna radiation patterns in the 

theory of random arrays. The high accuracy localization benefits of coherent MIMO radar systems 

are inherent in the ambiguity function plots, as it is the ability to distinguish between closely spaced 

multiple targets. 

Relation to the Theory of Random Arrays With reference to Fig. 9 and the RPCA function 

defined in (20). the relative delay r^ is the delay corresponding the difference between round trip 

path lengths P — R — Q and P — O — Q. This difference is the sum of difference between the 

path segments PR and PO and the difference between path segments RQ and OQ. For a close 

examination of the parameters involved, consider the path RQ between scanning point R and the 

location of receive antenna Q. The difference between lengths of path segments RQ and OQ is equal 

to OA where the arc RA is drawn with center Q and radius QR. Thus the relative delay for the 

receive antenna I is given by r^/ = =-^— where c is the speed of light. The distance from the scanning 

location to the location of receive antenna, RQ can be calculated in terms of the polar coordinates 

of locations R and Q by applying Pythogorous theorem.    Thus we have OA = OQ — RQ — 

Pi (2 «<*-*)-£) where the coordinates of scanning location R are (p, (f>) and 

the coordinates of receive antennal location Q are (p/,#;). Binomial expansion of the square root 

term and omission of higher order terms leads to the approximation OA ~ p cos((p — 0/) — &-. When 

p « pi the second order term can be omitted thus OA ss pcos(cf) — Q\). In Fig. 9, this implies 

OA % OB where RD is perpendicular to OQ. It is seen that the relative delay in this case becomes 

dependent only on the bearing angle of the antenna with respect to O. 

Nevertheless, as far as the complete MIMO system is concerned, the aperture of the entire 

deployment is comparable to the mean distance to the scatterer and therefore each antenna is seen 

with significantly different bearing angle. Therefore we have a near-field scenario with respect to the 

distributed MIMO system. This scenario is different from far-field radiation pattern encountered in 

the theory of random arrays. In the limiting case when the distance to the scatterer is much larger 

than the aperture size, the scenario becomes similar to that of random arrays. This transformation 

is illustrate in Fig. 10. With the completely far field scenario as in Fig. 10(b), the set of randomly 

placed antennas in the two dimensional space can be represented by two mutually orthogonal one 
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dimensional random arrays. Nevertheless, a framework more appropriate for the typical parameter 

setting in distributed MIMO radar is as in Fig. 10(a). 

c SENSOR FIELD 
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(a) Near-field witli respect to sensor array.        (b) Far field with respect to sensor array. 

Figure 10: Near-field/far-field scenarios in distributed MIMO radar. 

In our analytical framework, the distance is measured in wavelengths and the speed is measured 

in number of wavelengths per second. Thus the delay is equal to distance in value and therefore c 

and /o can be dropped in the writing. The RPCA function can now be rewritten as 

M    N 

^) = OTEE -j2np{cos(4>-6k)+cos(4>-8i)) (21) 
fc=i (=i 

When the scanning point coincides with the observation point, we have A(P = O) = 1. Outside of 

the neighborhood of O, the unit vectors e-J
2*p(c°s(<t>-8k)+cos(4>-8l)) comDme wJth random phases to 

produce a pattern with peaks and valleys in the two dimensional space. 

As the potential for localization performance enhancement is evident from the ambiguity func- 

tion, the lower bound on the attainable accuracy is set in [40] by developing the Cramer-Rao lower 

bound for target localization. The bound is shown to be inversely proportional to the carrier wave- 

length, and for narrowband signals, essentially independent of the signal bandwidth. Additionally, 

the CRLB on the target localization accuracy offers a MIMO advantage gain of the order of y/MN 

(where M is the number of transmitting radars and N is the number of receiving radars) in the 

sense that the CRLB decreases with 1/%/MiV. This outcome is consistent with the diversity gain 

in a MIMO communication system with M transmit and N receive antennas, where the maximal 

diversity gain is MN, which is the total number of fading gains that one can average over. 
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Statistics of the RPCA function In this section, the statistics of the RPCA function are 

examined. As the sensors in a distributed MIMO radar are randomly deployed, the RPCA is a 

random function in the two dimensional space. The distribution of peaks of RPCA outside of 

main beam over the surveillance area, or at the least, characterization of parameters such as first 

and second moments (mean and variance) as a function of spatial coordinates are of interest. Let 

u = cos((j) — Ok) ana- v = cos(<f> — 9[). Here 0^ and 0\ are random variables. Therefore for a given (p. 

u and v are random variables. Thus we rewrite (21) as 

M    N 

A^^ = MN^^e~j2n"iU+V)- (22) 

fc=i 1=1 

Assume that the antennas are uniformly distributed within a sector of angle 20ruax with respect to 

the true position of the target, as shown in Fig. 9, leading to uniform distribution for 0). and 0[ in 

\—9max,0max\-  The probability density function of u (and v) is given by f(u) = — 1
/r—-g.  We 

first discuss the behavior of the mean and the variance of P(p, 4>). Next, the joint distribution of 

independent sample points in the sidelobe region is analyzed to obtain the requirements to achieve 

a given maximum guaranteed sidelobe level with a given confidence level within the surveillance 

region. 

Mean and Variance The mean pattern is found by taking the expectation E \A{p, </>)] over u 

and v and is found to be 

E[A{P,4>)} = ^{Pl(t>), 

where i/>(/9, tp) is the characteristic function of u which can be shown to be given by 

y rCOs(<j>-6max)     „—j2TTpU 

xP(p^) = -  /   du. (23) 
£vmax Jcos(<j>+8max)     Vl-f 

Each quadrature component of A(p, a) in (22) is a summation of independent and identically 

distributed complex-valued random variables. Assuming that the number of terms in the sum 

is sufficient for the central limit theorem to apply, it is concluded that A(p, <p) has a complex 

Gaussian distribution. The variances of the real and imaginary parts of A(p, 0), of(/9, a) and 

a\{p,4>) respectively, can be derived with the steps as in [42].   It can be shown that the total 
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variance <r2{p, 4>) — &2(Pi </>) + a\{p, <t>) is given by 

a2(p,4>) 
MN 

[l-|^(p,0)|2(2-|^p,0)|2)] 

^ + ^)l^,</>)l2(i -\i>M)?\ 

It can be seen that at p = 0, a2 (p, <f>) = 0 and away from the main-lobe, a  (p, <j>) 

scales down as jhj w.r.t. the mainlobe. 

MN 
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Figure 11: Cut-Pattern in X and Y directions for 6max = 7r/4; MXJV system. 

Spatial patterns of the mean and variances were computed and are shown in Figs. 11-13. Fig. 11 

shows the cut-patterns of mean and variances along the X and Y directions when 9max — TT/4. The 

value of variances is zero at the true location of the scatterer where the mainlobe peak occurs. Thus, 

the mainlobe is deterministic. As the scanning location deviates from the true scatterer location, 

the variance increases rapidly. In fact the variances reach a large fraction of their first peak values 

within the mainlobe of pattern of mean. This implies that the RPCA function becomes random 

within a distance in the order of a single wavelength. The variances and therefore the fluctuations 

can be reduced by increasing the number of antennas. With sufficiently large number of antennas, 

the pattern would behave similar to the pattern of mean. 

Fig.   12 shows the two dimensional intensity plots of the same.  The GDOP effect due to the 
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Figure 12: Two dimensional patterns for 9max = n/4. 
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Figure 13: Two dimensional mean patterns for varying 0max- 

non-symmetric placement of sensors around the target is observable in these results. Presented in 

Fig. 13 are the comparison of mean patterns for different values of 9max. As 9max is increased, the 

width of mainlobe decreases thereby increasing the resolution. Best resolution is achieved when 

the target is completely surrounded by the antenna field. However, the number of sidelobes within 

the visible area is increased as 9max is increased. 

Sensors as Transceivers For the scenario where there are iV sensors all functioning both as 

transmitters and receivers, there are N2 paths. However, the paths have correlations and therefore 

the results for MN independent paths as above change accordingly. The mean of the pattern for 

this scenario are as follows. 

E[A{p,d>)] = E 
' (   N N N 
_L  J \^ e-j2n(2p)u + V^     y^     e-j2np(u+v) 

which leads to 

E\A(p,4,)\ = -i,(2P,4,) 
(w-v<„,«, 

(25) 

(26) 
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where ip(p, > •in - [ cos{<t>-0max) e-j2,rp" 
COs{4>+$max)      \/l-u'2 (III . The pattern variance is given by 

<J2{pA) N2 
^3+4(^-^ + ^)^^|2- 

1 N     N2 

3 
\ip(p,<t>)\4 

N3 l^(2p, 0)|2 (27) 

1 1 
(l>(2p, <t>W2(p, 0) + r(2p, 4>H2(p, </>)) 

It is easily verified that at p = 0, ip(-) = 0 leading to cr2(p,* 

variance for this case is shown in Fig. 14 
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ax = 7r/4; N transmit/receive. 

It is seen that for the case when each of the N antennas function both as a transmitter and a 

receiver, the variance converges to a value twice as much as for the case where all the antennas are 

independent. 

Critical Number of Antennas While statistics such as mean and variance provide important 

insights on the behavior of the RPCA function, a robust design requires the sidelobe levels within 

the visible area to be bounded above by a tolerable value. The requirements for a given sidelobe 

level and a confidence interval are discussed in this section. 
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As mentioned in Section 4, the sidelobes of the RPCA function A(p, <j>) can be modeled using 

the complex Gaussian distribution. From (24), it can be seen that the variance s a1 —> jkj for 

locations sufficiently far from the mainlobe. Therefore the magnitude of A(p, <f>), Q = \A(p,<j))\ has 

a Rayleigh probability density function given by 

p(g) = ,MJVexp^~£V (28) 

and a cumulative distribution of the sidelobe level 

Pr(Q <q) = J%{t)dt = 1 - exp f~M^ \ . (29) 

We are interested in determining the conditions that guarantee that most of the sidelobe peaks 

within the surveillance area do not exceed a specified value. 

Fig. 4 shows the probability that all n independent samples of the sidelobe levels are below a 

given value as a function of number of antennas. In the distributed MIMO radar every antenna 

functions as a transmitter as well as a receiver thus M = N. It can be seen that 99% confidence 

level for — lOdB sidelobes can be achieved with a number of antennas as low as nine. As seen from 

the curves for n = 16,64, and 256 corresponding to surveillance area dimension of 4.8, and 16 

wavelengths, the sensitivity of the distribution to n the number sampling points is not high. 

4.1     Waveform Design 

Distributed coherent MIMO radar consists of randomly placed sensors over a large spatial area. 

Thus this radar systems inherently have the ability of high resolution as previously discussed. To 

keep the localization ambiguities under control, requires us to use a number of antennas larger 

than the threshold, as per the discussion in the previous section. The system can also benefit from 

optimizing the locations of antenna, which is an aspect still to be investigated. We identify that the 

alternative possibility is to utilize multiple sub-carriers to complement the number of sensors. The 

way to mitigate the sidelobes using multiple subcarriers can be demonstrated considering linear 

arrays and far field pattern as follows. 

Let a linear array with M transmit elements.  The transmit pattern as a function of angle is 
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Figure 15: Distribution of sidelobe level below required target as a function of number of antennas. 

given by 

P(9) = 
M 

771=1 

-j2nxms'm6 

where 9 is the angle with respect to the normal to the array and xm is a sensor location expressed 

in terms of the nominal carrier wavelength. By plotting P{9) for different values of M it is possible 

to observe the effect of the number of sensors on the pattern. Now, let us assume that each antenna 

transmits N subcarriers. The pattern becomes 

P(9) = 
N-\   M , . 
y- y^c-i2ir(l+£)*msin* 

n -[) in-- 1 

where fc is the nominal carrier frequency and /„ is the subcarrier offset from the carrier frequency. 

The phase of one of the terms in the sum above will change by n when 

In x,„ sin# as 1. 
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The required frequency shift is then 

In 1 

xm sin 9 

The pattern P{9) can be plotted for various values of M and N. Fig. 16 shows an example of the 

sidelobe reduction achieved by using multiple subcarriers. In this example, we consider 10 sensors 

and 256 sub-carriers. 

M=10,  RANDOM SEPARATION BETWEEN SENSORS 

M=10, N=256, RANDOM SEPARATION BETWEEN SENSORS, 
SEPARATION BETWEEN CARRIERS=f/1000 (FIXED) 

-80 -60 -40 -20 0 20 40 60 80 
ANGLE (DEGREES) 

Figure 16: Sidleobe mittigation with muliple sub-carriers. 

5    MIMO Radar Applications 

This section provides several examples of MIMO radar applications, which illustrate various aspects 

and properties of MIMO radar. The first example illustrates the application of MIMO radar 

to obtain a diversity gain to overcome fades in target RCS. In the second example, multistatic 

observations are exploited to improve the detection capability of a moving target. The final example 

exploits coherent processing among the elements of MIMO radar to obtain high resolution target 

detection/estimation. 
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5.1     Diversity Gain 

This subsection addresses radar functions that exploit RCS spatial diversity of targets.  Diversity 

gains for target detection and direction finding are reviewed based on [23] and [36], respectively. 

In both cases, the target is stationary and it is observed against a background of white Gaussian 

noise. 

Target Detection 

Diversity processing seeks to exploit multiple paths through which the signals propagate from 

the transmit antennas to the receive antennas. Such a path starts from a transmitter. The trans- 

mitted waveform impinges on the Q scatterers that form the target. The path terminates at a 

receiver, where the responses from the Q scatterers combine. Since the scatterers are too close to 

be resolved by the waveform, the Q echoes combine as in a flat fading multipath scenario to form 

a fading channel coefficient. With M transmit and N receive antennas, there are MN such paths 

corresponding to the MN elements of the channel matrix H. Under the conditions discussed in 

Section 2.2 (complex targets with large Q and sufficiently spaced antennas) the MN paths are 

decorrelated. The set of transmitted waveforms has to be designed to facilitate the separation be- 

tween waveforms arriving simultaneously at the receiver. Simple signal separation is possible when 

the transmitted waveforms are orthogonal and maintain their orthogonality at the receiver end. 

For the target detection, we form two hypotheses: under hypothesis Hi, a target is present at 

X = (x, y); under the alternative hypothesis, the target is not present. The classic Neyman-Pearson 

detector is given by the likelihood ratio test 

Hi 

log^f|   £  7, (30) 
Px {r\H0)   

<- 

Hn 

where p\ (Y\H\ ) and px (r|-£/o) are the likelihood functions of the observation vectors under the re- 

spective hypotheses. The likelihood functions are parameterized by the location X of the resolution 

cell under test. The threshold 7 is determined by the tolerated level of false alarms. Assuming that 

the components of the received vector r(i) have bandwidth W (the same bandwidth as the trans- 

mitted waveforms), the density functions px (r\Hi), px (r|i?o) are understood in the conventional 
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sense as joint distributions of samples of the real and imaginary parts of r(t) taken at \/W time 

intervals (see for example [35]). From the signal model (6), the observations rg(t) are functions of 

the channel coefficients h^. Concatenating the columns of the channel matrix H to form the length 

MN vector h, and recalling the discussion in Section 2.2, h is stochastic with probability density 

function p(h) oc exp ( — ||h|| j , where ||-|| denotes the Euclidean norm. This follows since the ele- 

ments of h, are mutually independent with each element being complex Gaussian with zero mean 

and variance 1. The target detection process involves the simultaneous transmission of orthogonal 

waveforms and the testing of a decision statistic by a central processor. The central processor is fed 

with data sampled by the receivers at delays corresponding to resolution cells. By suitable control 

of sampling instants, this process can test for the presence of a target in each of the resolution cells 

in Fig. 2. 

Assuming orthogonality between waveforms and the signal model in (6), it is possible to extract 

a noisy estimate of each element of H corresponding to a point X — (x, y) in the x-y plane. The 

estimate for element hek is obtained by applying the matched filter for waveform s^ (t) to the 

received signal at the £-th antenna, re (t), and sampling at a time delay corresponding to location 

V: 

Vik (X) 
T 

re(t)st(t-[Ttk(X) + Tre(X)})dt. (31) 

Notice that by exploiting orthogonality between the transmitted waveforms, y^ (X) contains the 

target response to only sk (t). Let y (X) denote the vector formed by y^ (X) for £ = 1,..., N and 

k = 1,..., M. Starting with (6) and given the just described distribution for h, it is possible to 

develop an expression for the probability density function of the received vector from a resolution 

cell containing the target and averaged over the values of h. The detailed steps are omitted here 

due to space considerations, but following steps similar to those in [23], it can be shown that 

PX{T\HI)   =    fpx(r\Huh)p(h)dh 
Jh 

oc    exp \r(t)fdt exp |y(*)||' 
°l {< + §) 

(32) 
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For hypothesis HQ. we have 

p(r(t)\H0) oc exp WrMm 2dt (33) 

It follows that the Neyman-Pearson detector is given by 

Hi 

lly(*)H2    £   71- (34) 

Ho 

In order to set the value of the threshold 71 for a tolerated level of false alarms, the central processor 

has to have full model knowledge, i.e., the values of waveform energy E and noise power a\,. By 

inspection of (34), the optimal processor is a non-coherent combiner of the signals pre-processed 

by the sensors. With M transmitters and N receivers and under conditions discussed earlier, 

||y (X)\\ is the sum of the magnitudes of MN uncorrelated noisy estimates of channel coefficients 

. When, with suitable normalization, a single term |y^ (X)\ has a \% (chi-square with two degrees 

of freedom) distribution, the test statistic in (34) has the improved statistical properties of a X2MN 

random variable. 

Closed-form performance expressions are given in [23] for cases with full and partial model 

knowledge. The figure reproduced here is for the case that the signal energy and noise power 

level are known. Fig. 17 illustrates the gains provided by MIMO radar (curves labeled "MIMO") 

over a conventional phased-array radar (labeled "conv"). The curves in the figure represent the 

miss probability as a function of SNR for a fixed false alarm probability of 10~° and for various 

MIMO/phased-array configurations. The slopes of the MIMO curves clearly show diversity gains 

similar to those obtained in communications (compare to [27] for example). For a more extensive 

set of results we refer the reader to [23]. 

Direction Finding 

Another application that can benefit from the diversity gain of MIMO radar is direction finding 

(DF). In this case, the target spatial diversity is supported by widely separated transmitters, while 

the receiving sensors are placed at A/2 intervals to enable unambiguous DF. Such a system is 

studied in [36]. Here, we reproduce some of the numerical results from [36]. The mean square error 
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Figure 17: Miss probability of MIMO radar compared to conventional phased-array. Miss proba- 
bility is plotted versus SNR for a fixed false alarm probability of 10~6. 

(MSE) of the maximum likelihood (ML) estimate of the angle of arrival is evaluated and plotted 

versus the SNR for various antenna configurations. Fig. 18 shows the MSE for number of transmit 

antennas M = 1, 2,4, and 16, respectively. The target is located at boresight, 9 — 0, and the phased 

array at the receiver utilizes TV = 6 elements. It is observed that the MSE for the single-antenna 

case, M — 1, is much larger than for M = 4 or M = 16. MIMO radar transmit diversity with 

M = 4 provides a gain of more than 20 dB for the same MSE. 

5.2    Moving Target Detection 

Observing targets over wide angular sectors with a MIMO radar offers great benefits for Doppler 

processing and moving target detection (MTD). MIMO radar is particularly useful in some cases 

when the targets are difficult to distinguish from the background clutter. The enhanced MTD per- 

formance of MIMO radar stems from its distributed nature, which makes it possible to overcome 

typical problems that plague conventional or array radars such as targets with low radial velocities 

or blind speeds. Further, the joint processing of the received waveforms results in superior perfor- 

mance compared to multistatic radar, where each sensor typically performs its own Doppler shift 
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Figure 18: Average MSE of the ML estimator versus SNR. 

estimation. 

MTD with MIMO radar is investigated in [24], The scenario considered consists of a single 

transmitter and N > 1 widely dispersed receivers. The transmitter and receivers are stationary. It 

is assumed that the moving target is sufficiently far from the sensors such that its Doppler shift 

with respect to the sensors is constant during the observation of K samples. A central processor 

is fed with test statistics computed at the sensors. The clutter is assumed zero-mean, complex 

Gaussian with known K x K temporal covariance matrix C. The clutter is also assumed spatially 

homogeneous in the sense that it has the same properties for all transmitter-receiver pairs and 

for all resolution cells. In Section 2.1, in discussing target detection, the channel elements /i«. 

were modeled as stochastic with known statistics. Here, we take a slightly different approach, and 

assume that these coefficients are deterministic unknown. The two slightly different approaches 

follow the respective models employed in the references that are reviewed in this paper, but should 

not affect key features of MIMO radar. 

In this subsection, tests for the detection of a single, moving target are discussed. The target, if 

present, is moving with unknown velocity components (vx,vy), where vx and vy are deterministic. 
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unknown velocities measured in an arbitrary Cartesian coordinate system (refer to Fig. 6 for an 

illustration of the setup). Given M transmitters and N receivers, there are MN paths resulting 

in MN different spatial looks at the resolution cell under test. The same number of looks can be 

obtained with a single transmitter and MN receivers; hence, to simplify notation, and without loss 

of generality, the discussion below assumes M = 1. In Fig. 19, the locations of the transmitter 

and the receiving sensors are denoted respectively, T\ and R(: i — l,...,N. The target and the 

transmitter are aligned on the x axis, while the receivers form angles Oe with the target-transmitter 

axis. 

x-ix.y) 
. 

Y 
;- 

»t 

i 
r, 3Hh* - 

Y 
 »«, 

Figure 19: Moving target detection scenario: single transmit antenna at location T\, multiple 
receive antennas at locatons Re, making angles 9e, £ = 1,..., N. Target at X = (x, y) with velocity 
components vx, vy. 

To test for the presence of the target in a resolution cell, we develop a generalized likelihood 

ratio test (GLRT). The GLRT maximizes the likelihood ratio test over the unknown parameters: 

the target response heu and the velocities vx, vy. Under hypothesis Hi, a target is present in the 

tested resolution cell centered at coordinates X = (x,y); under the alternative hypothesis, the 

target is not present in the resolution cell. A vector y^ (X) is defined to consist of K time samples 

of the form yd (X) defined in (31), and taken at the pulse repetition interval. XPRJ. The GLRT is 

evaluated by first expressing the likelihood ratio as a function of the unknown parameters h^. vx. 

and vy. Subsequently, the likelihood ratio is maximized over the unknown parameters.   Skipping 
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the details of the analysis, we list the MTD decision rules obtained for three types of radar: MIMO 

radar, multistatic radar, and phased array radar: 

The GLRT decision rule for MIMO radar is 

Hi 

SSg dt(/,)c-id(/<)   * ^ (3o) 

H0 

where d(/*) is a K x 1 vector representing the matched filter to a target response with Doppler 

frequency f(. This vector is composed of K time samples taken at the pulse repetition intervals, 

TPRI, and it has the form 

d {fe) = [1, exp l-j2nfeTpm],..., exp [-jtorft (K - 1) TPRI]]
T , (3G) 

where //» is the Doppler shift due to the motion between the sensor and the target. The Doppler 

shift can be evaluated with the help of Fig. 6, and it is given by 

/« = ^(l+cos0,) + ^sin0,. (37) 

For example, for a target moving along the x axis with velocity vx towards the transmitter and 

receiver, the Doppler shift is comprised of the frequency shift due to the motion between transmitter 

and target (vx/X). and the frequency shift due to the target-receiver motion ((vx/X) cosdf). Finally, 

the threshold 72 is determined by the tolerated level of false alarms. Notice that the test statistic 

in (35) is computed for each resolution cell X represented by a square in Fig. 19. The location 

X of the resolution cell determines the values of angle 6? needed in (37) and the values of y^ (X) 

computed using (31). A test statistic is computed at each sensor such that the clutter spectrum 

is whitened. The optimal processor is a non-coherent combiner of the test statistics computed at 

each sensor. The aggregate statistic is maximized over values of vx, vy velocities and the result is 

compared to the threshold 72 to decide on the target presence. 

Moving on to the multistatic radar, each sensor performs its own estimation of the Doppler 

shift fa rather than the joint processing carried out by the MIMO radar. This means that rather 
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than finding estimates vx, vy and restricting ft to the form in (37), each sensor estimates ft that 

maximizes a statistic computed locally. Then, the decision rule is 

Hi 

gnr dt(/,)c-id(/,) * *• (38) 

Ho 

where d (ft) is still defined by (36), but ft does not have to obey (37). 

Finally, the performance of the phased array is limited by its small aperture. Lacking the ability 

to view the target from multiple aspects, the phased array can observe only a single Doppler shift. 

ft — f. The N transmit elements are beamformed to provide coherent processing gain. The GLRT 

decision rule is then given by 

Hi 
|dt(/)C-1y(^)|2 

T dt(/)c-id(/)   * 74' (39) 

Ho 

where y (X) is the vector of K time samples at the output of the beamformed array corresponding 

to a target at X. 

The receiver operating characteristics (ROC) of the three different types of radar systems: 

the MIMO radar from (35) (labeled "MIMO"), the multistatic radar from (38) ('MS'), and the 

array radar from (39) ('conv') are shown in Fig. 20. Parameters used in the simulations include 

TpRl = 0.5 ms. K = 10 samples, carrier frequency = 1 GHz, clutter-to-noise ratio = 30 dB. and 

target angle of arrival 0°. There are N = 8 receiving sensors placed at uniformly spaced angles in 

the sector —40° to 50° with respect to the target. The target velocity is 300 km/h with random 

direction. The curves are parameterized by the target-to-clutter ratio ('tc'). 

The results demonstrate the superiority of MIMO radax over multistatic or array radars. The 

advantage over multistatic radar stems from the joint processing that constrains the search to 

velocities (vx,vy) common to all sensors. An additional advantage of MIMO radar is the ability 

to exploit the spatial diversity of RCS values. The multistatic radar can also benefit from RCS 

diversity, but since Doppler processing is local, it. yields higher false alarms.  The increase- in false 
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Figure 20: ROC for a 300 km/h target with random direction and with RCS fluctuations. 

alarms accounts for the gap in performance. The phased-array radar is handicapped by both low 

Doppler response to low radial velocities and by RCS fading. 

6    Conclusions 

In this report, we introduced the concepts of MIMO radar and reviewed some recent work focusing 

on applications with widely dispersed antenna elements. Generally speaking, MIMO radars trans- 

mit multiple waveforms, receive signals at multiple antennas, and process them jointly. Processing 

may be carried out non-coherently (as in Sections 2.1 and 2.2) or coherently (as in Section 2.3). 

The main topics discussed in the paper can be summarized as follows: 

• Complex targets contain a large number of scatterers that result in diverse RCS patterns as 

a function of angle. Decorrelation of the elements of the channel matrix occurs for complex targets 

and widely separated antennas. 

• For a target with spatially diverse backscatter, optimal processing of MIMO radar with 

suitably located sensors leads to diversity gains in the form of improved statistics of the SNR. The 
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processing collects the energy reflected by the scatterers and combines it non-coherently. 

• MIMO radar can locate targets with high resolution and can resolve between closely spaced 

targets. The processing for high resolution location beamforms the transmitted and the received 

signals to achieve resolution on the scale of the carrier wavelength. High resolution target location 

is challenged by ambiguity sidelobes and the need to phase synchronize a multisite radar system. 

• MIMO radar with a hybrid architecture of widely distributed transmitting sensors and a 

phased array receiver provides diversity gains for direction finding. 

• Observations over a wide angular sector can be exploited to detect targets moving in arbitrary 

directions. 

MIMO radar with widely separated sensors is a very promising concept for future, high per- 

formance radars. Yet many research and engineering challenges need to be addressed to advance 

MIMO radar from concept to reality. Engineering challenges include: centralized coordination 

of sensor transmissions, synchronized communication with a processing center, and highly pre- 

cise phase synchronization among sensors (of the order of nanoseconds for resolutions in meters). 

Research challenges include a better understanding of bistatic and multistatic RCS phenomena, 

tracking targets with MIMO radar, MIMO radar on airborne platforms, and others. 
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